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The use of fat to support the energy needs of reproduction (i.e. capital breed-

ing) has been studied in a diversity of taxa. However, despite reproductive

output (i.e. young or eggs) being approximately 70% water, little is known

about the availability of internal resources to accommodate the hydric

demands of reproduction. Recent research suggests that dehydration

increases the catabolism of muscle as a means of maintaining water balance.

Accordingly, we investigated the interactive effects of reproductive invest-

ment and water deprivation on catabolism and reproductive output in

female Children’s pythons (Antaresia childreni). Both reproductive and non-

reproductive females were either provided water ad libitum or were

water-deprived for three weeks at the time when reproductive females

were gravid. We found that water-deprived reproductive females had, in

general, greater body mass loss, epaxial muscle loss, plasma osmolality

and plasma uric acid concentrations relative to the other groups. Further-

more, water-deprived females had similar clutch sizes compared with

females with access to water, but produced lighter eggs and lower total

clutch masses. Our results provide the first evidence that selective protein

catabolism can be used to support water demands during reproduction,

and, as a result, these findings extend the capital breeding concept to

non-energetic resources.
1. Introduction
Optimizing reproductive phenology is essential to fitness, with offspring typi-

cally being born when trophic resources and abiotic conditions maximize

offspring survival [1,2]. However, producing offspring at such a time may

require reproductive activities (i.e. migration, mate acquisition and energy allo-

cation) to occur when resources are limited [3]. Multiple strategies exist to cope

with this possible temporal conflict. For example, females can unlink resource

acquisition from allocation by accumulating resources when available and

then relying on internal stores to invest in subsequent reproduction (i.e. capital

breeding [4]). To date, such breeding strategies have solely been approached

from an energetic viewpoint, where fat stores are primarily used to fuel repro-

ductive efforts [5–7]. However, offspring production requires other nutrients

that cannot be supplied by the catabolism of fat alone. For example, if not ade-

quately obtained from feeding, amino acids needed for offspring production

must come from the catabolism of muscle mass [8,9].

Water is another high-demand resource required for reproduction and nota-

bly embryonic development [10]. While in many environments water is readily

available when energy resources are not, this is not the case in arid ecosystems,

where access to drinking water may be extremely limited for extended periods.

In these ecological contexts, the appearance of offspring coincides with the

rainy season to take advantage of this period of high productivity. Such tem-

poral optimization may require females to start investing in reproduction

during times of concomitantly limited water and food resources. Capital breed-

ing provides a robust way to support the energy demands of reproduction,
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especially in seasonal environments [11,12]. Despite the cru-

cial importance of water for reproduction [13], to date it is

unknown whether such a capital breeding tactic also pertains

to water. We posit that mobilizing stored water (i.e. ‘capital’)

should provide benefits when environmental water resources

(i.e. ‘income’) are limiting at the time of reproductive effort.

A water-based capital breeding strategy is challenged by

the facts that water imbalance can have debilitating effects

on physical, cognitive and physiological functions [14], and

most species do not possess distinct water stores. However,

bound water is a significant component of all body tissues,

typically representing approximately 70% of the wet mass

of vertebrates. Thus, internal tissues could provide a water

source for reallocation to reproductive needs. While fat is

an exceptional source of energy, providing twice the energy

per gram as does protein, it is a less effective source for the

reallocation of bound water. Bound water represents only

approximately 10% of the wet mass of fat, while it represents

approximately 76% of skeletal muscle [15]. Overall, wet

protein mobilization yields more than five times the total

(metabolic and bound) water (0.155 g water kJ21) than does

wet lipids (0.029 g water kJ21) [16]. Therefore, muscle protein

may serve as an important water depot when environmental

water resources are not available. In fact, mammals and birds

enhance the catabolism of muscle relative to that of fat to

maintain water balance [17,18]. However, no previous efforts

have examined whether selective protein catabolism (beyond

that required for the reallocation of amino acids) can be used

to meet the water demands of reproduction.

Children’s pythons (Antaresia childreni) reside in the wet–

dry forest of northern Australia, and their eggs hatch shortly

after the onset of the rainy season. Consequently, reproduction

occurs during the latter parts of the dry season when both food

and water are extremely limited. In fact, plasma osmolality of

Children’s pythons increases as the dry season progresses

[19]. Children’s pythons are typical capital breeders, using

energy stores to support reproduction and notably yolk depo-

sition during vitellogenesis. The ensuing period of gravidity is

characterized by a shift in maternal thermoregulation, develop-

ment of the eggshell and the investment of a significant amount

of water into developing eggs [20,21]. While reproductive

female Children’s pythons provided with ad libitum water

but no food catabolize muscle to provide energy and amino

acids for egg production [9], it is unknown whether additional

muscle catabolism can support the investment of water into the

eggs when this resource is limited.

We examined the interactive effects of reproduction and

water deprivation on plasma osmolality, muscle catabolism

and reproductive output in female Children’s pythons. We

hypothesized that structural proteins serve as a valuable

source of water for developing eggs when environmental

water availability is insufficient. We tested the following

predictions:
(1) Females deprived of water dehydrate (i.e. increase

plasma osmolality) more than females with continuous

access to water, and the extent of this constraint is greater

in gravid relative to non-reproductive females due to the

water demand associated with gravidity.

(2) To support embryonic water demands, water-deprived

females catabolize more protein than females with ad

libitum access to water, as evidenced by a greater loss
of muscle and an increased plasma concentration of

uric acid, a by-product of protein catabolism.

(3) Protein catabolism is insufficient in covering all water

demands associated with gravidity, so water-deprived

females will have lower reproductive output than do

females that have access to water.

2. Methods
(a) Experimental design
To stimulate the reproductive cycle, snakes were overwintered

(6 L : 18 D cycle and a daily temperature cycle of 208C : 158C)

from 6 December 2016 to 7 February 2017. Snakes were deprived

of food from the onset of overwintering to the end of the

experiment (approx. five months). Upon emergence, the room

temperature was increased to a constant 31.58C, which is the pre-

ferred temperature of gravid Children’s pythons [20]. Females

were held at a constant temperature without opportunity to

thermoregulate to prevent a temperature-based difference in

water loss as a result of differential thermoregulation between

reproductive and non-reproductive females.

Females were randomly assigned to either the reproductive or

non-reproductive groups, with reproductive females, but not non-

reproductive ones, being exposed to a different male every 2–3

days, resulting in each reproductive female being sequentially

housed with six to eight males during this 18-day breeding

period. Each non-reproductive female was yoked to a reproductive

female so that the timing of its treatments, measurements and

sampling coincided with that of the reproductive female to

which it was yoked. At ovulation (based on a peri-ovulation

shed [20]), half of the reproductive females and their yoked part-

ners, were deprived of water until the reproductive females laid

her eggs (21–23 days). Treatment groups were: gravid with

water provided ad libitum (n ¼ 9), non-reproductive with water

provided ad libitum (n ¼ 8), gravid with no water provided

(n ¼ 10) and non-reproductive with no water provided (n ¼ 8).

Assessments focused on changes that occurred predomi-

nantly over the vast majority of the gravidity period. Body

mass, snout–vent length (SVL) and epaxial muscle width (at

both 50% and 75% of each snake’s SVL) were measured at ovu-

lation and again during late gravidity (21 days post-ovulation).

Epaxial muscle widths were measured following previously

described methods [9,22]. In brief, there is a palpable demarcation

where the longissimus dorsi muscle rests against the iliocostalis

muscle, so the distance between the lateral edges of the two long-

issimus dorsi muscles can be measured with digital calipers [22].

Four measurements were taken each at 50% and 75% of the dis-

tance from the head to the vent, and an overall average was

used for statistical analyses. Blood samples were collected from

females once the reproductive female of the yoked partners

reached late vitellogenesis and again when it reached late gravid-

ity. From the collected blood samples, plasma osmolality values

(vapour pressure osmometer, #5600, Wescor Inc.) and circulating

concentrations of nutrients were measured (glucose [blood glu-

cose meter, #EG220546, Medline Industries], triglycerides [assay

kit #TR0100, Sigma-Aldrich], total proteins [assay kit #23236,

Thermo Scientific]) and their catabolic by-products (ketones

[blood ketone meter, # OS020102A, Nova Biomedical] and uric

acid [assay kit #A22181, Life Technologies], for fatty acid and

protein catabolism, respectively). At oviposition, female body

mass, clutch size and clutch mass were measured.

(b) Statistical analyses
One-factor analyses of variance (ANOVAs) were performed to

compare mass and epaxial muscle changes over the course of

the experimental treatment (21 days) among the four treatment

groups. Two-factor ANOVAs were also performed to examine
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the influences of water treatment (water or no water), reproduc-

tive status (reproductive or non-reproductive), and their

interaction on epaxial muscle and mass changes.

Repeated-measures analysis of variance (rmANOVA) was

used to examine the effect of status (reproductive or non-

reproductive) and treatment (water or no water) on biochemical

assessments over the two time periods (late vitellogenesis and

late gravidity). Three-way interactions using treatment, status

and time period as fixed effects and individual identity as a

random effect were also tested.

The influence of treatment on clutch size (i.e. number of eggs

per clutch) was tested using a linear model with treatment (water

or no water) as a fixed effect and the SVL as a covariate. As clutch

size and body size are closely related in snakes, size-adjusted

fecundity was calculated by extracting residuals of the linear

relationship between clutch size and the SVL. The effect of treat-

ment on clutch mass was then tested using a linear model with

treatment as a fixed effect and the SVL and size-adjusted fecund-

ity as covariates. The data were checked to ensure they met the

assumptions for parametric testing, and transformations were

used where necessary. All statistical analyses were performed

in R v. 3.3.2 [23] with the packages ‘nlme’ and ‘multcomp’

[24,25] for rmANOVAs and ‘agricolae’ [26] for post hoc tests.

Significance was set at a ¼ 0.05.

3. Results
(a) Morphological changes during treatment
Females at the onset of the experiment had similar SVL

(F1,34 ¼ 1.32, p ¼ 0.28) and body mass (F1,34 ¼ 1.17, p ¼
0.33). We found significant differences in mass loss during

the three-week experimental period among the four groups

(F3,34¼ 8.05, p ¼ 0.004) with higher values in water-deprived

reproductive females when compared with water-provided

reproductive females (figure 1a). Using a two-factor ANOVA,

we found that mass loss was influenced by treatment, being

significantly higher in water-deprived females than water-

provided females (respectively, 285.46+9.45 g versus 225.19+
9.68 g, F1,34¼ 19.81, p , 0.001). We found no effect of repro-

ductive status (F1,34 ¼ 2.18, p ¼ 0.14) and no interaction

between treatment and status (F1,34 ¼ 0.87, p¼ 0.35).

The mean epaxial muscle width was not related to body size

(F1,34 ¼ 2.35, p¼ 0.13) and there was no initial difference in

muscle width among experimental groups (F1,34¼ 1.35, p¼
0.27). Comparing the four experimental groups revealed that

epaxial muscle loss was greatest in water-deprived reproductive

females compared to the other groups (F3,34 ¼ 11.38, p¼ 0.0001;

figure 1b). A two-factor ANOVA revealed that muscle loss was

influenced by treatment with higher values in water-deprived

females relative to water-provided females (22.75+0.18

versus 21.81+0.2 mm, F1,34 ¼ 10.96, p ¼ 0.002). We also

found a significant influence of status with higher values in

reproductive females relative to non-reproductive females

(22.94+0.19 and 21.62+0.2 mm, F1,34 ¼ 21.8, p , 0.0001).

No interaction was found between status and treatment

(F1,34 ¼ 0.14, p¼ 0.71). Epaxial muscle loss and mass loss were

correlated (F1,34 ¼ 11.44, p ¼ 0.002), emphasizing that muscle

catabolism was associated with mass decreases.

(b) Influence of treatment on blood parameters
Plasma osmolality prior to the onset of water treatment (late

vitellogenesis) was similar among groups (F1,31¼ 0.49, p ¼
0.42). By contrast, at the end of treatment (late gravidity), osmol-

ality was higher in water-deprived females when compared
with water-provided ones. We found significant time by water

treatment (F1,31¼ 56.90, p , 0.001) and time by reproductive

status (F1,31¼ 34.72, p , 0.001) interactions, but no three-

way interaction (F1,31¼ 1.00, p ¼ 0.34). When considering

osmolality change (i.e. final osmolality minus initial osmola-

lity), we found a significant influence of both treatment

(F1,31 ¼ 55.39, p , 0.0001) and reproductive status (F1,31 ¼

34.97, p , 0.0001), but there was no interaction (F1,31 ¼ 2.13,

p ¼ 0.16). An HSD post hoc test revealed that osmolality

increases were highest in water-deprived reproductive females

http://rspb.royalsocietypublishing.org/
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(65.70+4.17 mOsm kg21, all p , 0.05). Osmolality increase

was not different between water-deprived non-reproductive

females (43.62+ 4.66 mOsm kg21) and water-provided

reproductive females (36.77+4.39 mOsm kg21). Finally, the

lowest osmolality changes were found in water-provided non-

reproductive females (5.87+4.66 mOsm kg21, HSD post hoc

tests, all p , 0.05; figure 2).

Regarding the biochemical assays, we found a significant

time by reproductive status interaction in plasma concen-

trations of total triglycerides (F1,31 ¼ 18.06, p , 0.001),

ketones (F1,31 ¼ 10.72, p ¼ 0.003) and uric acid (F1,31 ¼

23.51, p , 0.001; figure 3a,b,d ) where late vitellogenic females,

regardless of water treatment, had higher levels than did non-

reproductive females. During late gravidity, water-restricted

gravid females had higher uric acid levels compared to the

other three groups (all p , 0.05). For total protein, we did

not detect any significant interactions (all p . 0.05); however,

there was a significant main effect of time where total pro-

teins increased from late vitellogenesis to late gravidity

(F1,31 ¼ 16.80, p , 0.005; figure 3c). We did not detect any

significant interactions or main effects in plasma glucose

concentration (all p . 0.05).

(c) Influence of experimental treatment on reproductive
output

Clutch size was influenced by SVL (F1,18 ¼ 6.77, p ¼ 0.02), but

not by treatment (12.5+ 0.7 versus 12.2+ 0.7 eggs for water-

deprived and water-provided females, respectively; F1,18 ¼

0.09, p ¼ 0.76) or the interaction term (F1,18 ¼ 0.55, p ¼ 0.46).

Clutch mass was positively influenced by SVL (F1,15 ¼

22.86, p , 0.001). We found an influence of size-adjusted

fecundity, with relatively more fecund females having hea-

vier clutches (F1,15 ¼ 17.40, p ¼ 0.001). After accounting for
these two independent covariates, we detected a significant

effect of treatment with water-deprived females producing

slightly lighter clutch masses than water-provided females

(figure 4; F1,15 ¼ 7.62, p ¼ 0.014). Therefore, water-deprived

females produced 16% lighter eggs than did water-provided

females (mean egg mass ¼ 9.48+ 0.36 versus 11.38+ 0.62 g,

respectively, F1,17 ¼ 6.74, p ¼ 0.02). Finally, we found that

average epaxial muscle loss was negatively related to

clutch mass (F1,17 ¼ 5.65, p ¼ 0.03) and average egg mass

(F1,17 ¼ 3.04, p ¼ 0.007). When considering each group

separately, the negative relation between epaxial muscle

loss and clutch mass was marginal in water-provided

ones (F1,8 ¼ 1.31, p ¼ 0.28).
4. Discussion
Resource-based trade-offs have shaped many of our current

concepts in evolutionary ecology, and energy is usually the

currency being balanced. For example, most of our under-

standing of the gradient between income and capital

breeding strategies has focused solely on energetic require-

ments and cost/benefit balances associated with storage

[6,7,27]. Our results provide the first evidence that protein

catabolism can be used to support water demands during

reproduction, and these findings extend the capital breeding

concept to non-energetic resources.

Vitellogenic females had higher plasma concentrations

of total triglycerides, ketones and uric acid than did non-

reproductive females (figure 3a,b,d ), reflecting the energy

mobilization required for yolk production into developing

follicles of lecitothropic species [28–30]. All plasma osmolal-

ities measured in this study were within the osmolality range

of free-ranging A. childreni (279–354 mOsm kg21) [19],

suggesting ecological relevance despite being a laboratory

http://rspb.royalsocietypublishing.org/


160 A

cl
ut

ch
 m

as
s 

(g
)

B

0
R-W R-NW

10
60
70
80
90

100
110
120
130
140
150

Figure 4. Influence of treatment on clutch mass (grams) measured in repro-
ductive (R) female Antaresia childreni with (W) or without (NW) access to
water from ovulation to oviposition. Plotted values are LS means adjusted
for maternal size (SVL) and relative clutch size (see text for statistics).
Error bars represent +1 s.e.m. Different letters indicate significant differ-
ences among groups (HSD post hoc test).

rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20180752

5

 on June 27, 2018http://rspb.royalsocietypublishing.org/Downloaded from 
study. Initially, osmolality was similar among all four female

groups but, after the water treatment, it was strongly influ-

enced by both treatment and reproductive status. Water-

deprived, non-reproductive females had a higher plasma

osmolality than did those provided with water. Additionally,

females during late gravidity had a higher plasma osmolality

than did non-reproductive females, even when both groups

had ad libitum access to water (figure 2). These results

suggest distinct water imbalances associated with water

deprivation and reproduction. Plasma osmolality in females

facing both of these challenges simultaneously (i.e. gravid

females deprived of water) was significantly different from

non-reproductive females deprived of water. Furthermore,

the change in osmolality was greater in reproductive,

water-deprived females when compared with the three

other groups, which underlines the cumulative constraints

imposed by reproduction and concurrent water restrictions.

Water deprivation strongly impacted body mass loss and

increased protein catabolism in reproductive females (as evi-

denced by greater loss of epaxial musculature and higher

plasma uric acid concentrations; figures 1b, 3d ). Because pro-

teins are a much lower energetic source than are lipids

(5.3 kJ g21 and 37.6 kJ g21, respectively), this suggests that

the oxidation of proteins was mostly driven by water

needs, as protein supplies five times more total water than

do lipids [16]. Muscle loss during reproduction has been

documented in insects [31,32], fish [33], reptiles [34], birds

[35,36] and mammals [37,38]. Protein mobilization is typi-

cally associated with extended fasting and is thought to

cover energy and amino acid requirements when lipid

reserves and food intake are insufficient [9,39]. Alternatively,

protein mobilization can serve as a water resource during

times of water restriction or increased water demands [40].

Our study is the first to link muscle atrophy during reproduc-

tion to water allocation requirements of developing offspring.

Muscle loss associated with fasting and reproduction is

known to alter locomotor performance [34,41,42] and

induce predation costs [43]. Therefore, using muscle as a

water depot under water-limited circumstances leads to an

important water-based trade-off between reproduction and

performance that is similar to that commonly demonstrated

with energy as the currency.
Water deprivation had no impact on clutch size, probably

because treatment started at ovulation, after clutch size deter-

mination and energy investment is mostly completed [44].

Importantly, water-deprived females produced lighter

clutch masses when compared to water-provided females.

This impact on reproductive output suggests that maternal

catabolism of muscle, while greater in water-deprived

females, was not to the extent needed to completely satisfy

the water requirements of the developing embryos during

gravidity. This implies that there is a trade-off that creates a

parent–offspring conflict [45–47]. Evidence for a water-based

transgenerational conflict has been previously demonstrated

in two viviparous squamates [47,48]. Our study clearly

supports the existence of a trade-off between female con-

dition (e.g. muscle mass and osmolality) and reproductive

output (e.g. egg size). For the female, loss of epaxial muscle

width has been previously correlated with reductions in

whole-body performances [49,50] and increases in plasma

osmolality alter physiological performances [19,51,52]. From

the perspective of the offspring, egg mass in squamates is

typically positively correlated with offspring size [53,54].

Additionally, the egg mass difference we report probably

reflects reduced water allocation, and lower egg water-

content reduces embryonic yolk absorption, resulting in

smaller size and reduced offspring performance [55,56].

Our experimental water restriction was limited to the

time when females were gravid, which lasted for a rather

brief period (three weeks). An even more significant conflict

may take place if water deprivation occurs over a longer

period and encompasses additional reproductive stages

(e.g. vitellogenesis). Furthermore, examining only simple

quantitative metrics of reproductive output (e.g. clutch size

and egg mass) may miss more cryptic effects, so future

research on water-based trade-offs should examine com-

positional components of eggs, offspring phenotype and

offspring performance.

Uricotelic species (i.e. reptiles and birds) produce a

highly concentrated, and frequently solid, form of nitrogen-

ous waste. Therefore, the elimination of the nitrogen freed

during muscle catabolism requires little water, enabling

water acquired from muscle catabolism to be reallocated to

internal needs. By contrast, it has been proposed that ureo-

telic animals do not rely on protein catabolism for water

[57], mostly as a result of the nitrogenous wastes requiring

a considerable increase in urine production. However,

there are examples of ureotelic animals facing times without

any external water sources [58–62]. Given the consistent

demands for water during reproduction and results pre-

sented herein, muscle catabolism to fulfil both energy and

water requirements may be a widespread phenomenon

deserving of further attention across taxa. This is especially

relevant given that current changes in rainfall patterns are

challenging reproductive strategies [1,63,64] and can have

negative impacts on entire ecosystems [65]. Further altera-

tion in water availability is predicted widely across the

globe, and increased muscle mobilization during reproduc-

tion may result in higher survival or performance costs of

reproduction.
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47. Dupoué A, Brischoux F, Angelier F, DeNardo DF,
Wright CD, Lourdais O. 2015 Intergenerational
trade-off for water may induce a mother-offspring
conflict in favour of embryos in a viviparous snake.
Funct. Ecol. 29, 414 – 422. (doi:10.1111/1365-2435.
12349)
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