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ARTICLE INFO ABSTRACT

Keywords: Plasma corticosterone (CORT) concentrations fluctuate in response to homeostatic demands. CORT is widely
Hydration recognized as an important hormone related to energy balance. However, far less attention has been given to the
Squamate potential role of CORT in regulating salt and water balance or responding to osmotic imbalances. We examined

Reproductive investment
Antaresia childreni
Osmotic stress

the effects of reproductive and hydric states on CORT levels in breeding Children’s pythons (Antaresia childreni),
a species with substantial energetic and hydric costs associated with egg development. Using a 2 X 2 experi-
mental design, we examined how reproduction and water deprivation, both separately and combined, impact
CORT levels and how these changes correlate with hydration (plasma osmolality) and energy levels (blood
glucose). We found that reproduction leads to increased CORT levels, as does dehydration induced by water
deprivation. The combined impact of reproduction and water deprivation led to the largest increases in CORT
levels. Additionally, we found significant positive relationships among CORT levels, plasma osmolality, and
blood glucose. Our results provide evidence that both reproductive activity and increased plasma osmolality can
lead to increased plasma CORT in an ectotherm, which could be explained by either CORT having a role as a

mineralocorticoid or CORT being elevated as part of a stress response to resource imbalances.

1. Introduction

The endogenous secretion of glucocorticoids is one of the main
mechanisms by which animals modulate their physiological and beha-
vioral responses to unpredictable and predictable stimuli (Romero and
Wingfield, 2016). The main glucocorticoid in rodents and non-mam-
malian terrestrial vertebrates (i.e., birds, amphibians, and reptiles) is
corticosterone (CORT) (Sapolsky, 2000), and it can affect growth
(Busch et al., 2008; Midwood et al., 2014), survival (O’Connor et al.,
2010; Romero et al., 2009), and reproductive success (Robert et al.,
2009; Wingfield and Sapolsky, 2003). There is an impressive body of
work examining the elevation in CORT in response to unpredictable
stressors and noxious stimuli (i.e., allostatic response, see Romero et al.,
2009; Vera et al., 2017). However, baseline CORT levels are also im-
portant to consider because they may reflect the homeostatic demands
faced by the organism (Landys et al., 2006; Romero, 2002). CORT is
important for regulating shifts in metabolism and behavior (Landys
et al., 2006) and it oscillates to meet demands associated with shifts in
life-history stages (Romero, 2002). For example, baseline CORT levels
are typically related to energy balance during reproduction and can
either increase to support direct allocation to reproduction (i.e., energy

model hypothesis) or decrease to minimize maintenance requirements
(Bonier et al., 2009a,b).

However, important variations exist among and even within species
in the directionality in which CORT levels respond (i.e., increase, de-
crease, or no change) to endogenous demands and predictable exo-
genous constraints (Dickens and Romero, 2013). For example, in-
dividuals can have dramatically different CORT responses to annual,
expected events such as decreased temperature during winter (increase
— Sheriff et al., 2012; decrease — Xu and Hu, 2017; no change -
Khonmee et al., 2016) or seasonal precipitation (increase — Strier et al.,
1999; decrease — Schoof et al., 2016; no change — Wilkening et al.,
2016). These variable responses suggest that changes in CORT levels
are extremely context dependent (de Bruijn and Romero, 2018; Graham
et al., 2017), emphasizing the importance of considering factors such as
life-history stage, body condition, and environmental conditions when
investigating the role of CORT within an organism. Despite these
variable patterns, CORT is critical to survival, maintenance, and re-
production (Darlington et al., 1990), and CORT levels are modulated to
adjust energy demands (Dallman et al., 1993; Remage-Healey and
Romero, 2001) and maintain homeostatic balance (Landys et al., 2006;
Romero, 2002).
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While energy is critical, water is another vital resource (Kleiner,
1999), and CORT has been shown to have important mineralocorticoid
roles involved with water balance in rodents (Agarwal and Mirshahi,
1999; Bentley, 1970; Liu et al., 2010; Thunhorst et al., 2007). While
more limited in number, several studies have examined the relationship
between CORT and water balance in non-rodent taxa. For example, a
link between CORT levels and hydration state has been demonstrated in
water-constrained environments (Bradshaw, 1997). However, high
variability in CORT levels suggests the response is context dependent.
For example, recent studies found that baseline CORT levels are not
affected by dehydration in animals with low metabolic demands (non-
reproductive snakes and lizards, Dupoué et al., 2014; Moeller et al.,
2017). However, in animals with higher metabolic requirements and
greater water deficits (e.g., pelagic sea birds), the opposite has been
documented (Brischoux et al., 2015). At least two studies have con-
sidered the additive challenges of reproduction and water deprivation
on CORT levels (Dauphin-Villemant and Xavier, 1985; Dupoué et al.,
2016). In the aspic viper (Vipera aspis), CORT has been found to be
closely related to the energy demands of pregnancy (Lorioux et al.,
2016). However, Dupoué et al. (2016) found that changes in CORT
levels were further increased when pregnant females faced water de-
privation. In these studies, the study animals were able to thermo-
regulate, possibly resulting in differing selected body temperatures and
thermal depression (see Ladyman and Bradshaw, 2003) that, in turn,
could have influenced the CORT response.

To further explore the influence that reproduction and water bal-
ance have on plasma CORT levels, we used Children’s pythons
(Antaresia childreni) in a two-by-two experiment where reproductive
status and hydric states varied but body temperature was controlled to
avoid confounding thermal effects on CORT levels. This capital-
breeding, oviparous squamate faces considerable physiological and
performance costs associated with reproduction, especially when con-
sidering that the energetic (Lourdais et al., 2013) and hydric (Brusch
et al., 2017) demands of reproduction must be met when energy and
water resources are limited in the environment (Taylor and Tulloch,
1985). We tested the hypothesis that plasma CORT concentration is
influenced by both reproductive status and hydric state. We predicted
that (1) reproduction will increase CORT; (2) water deprivation,
leading to dehydration, will increase CORT; and (3) the combined
challenges from reproduction and water deprivation will have an ad-
ditive effect on CORT.

2. Material and methods
2.1. Study species

Children’s pythons inhabit the wet-dry tropics of northern Australia
(Wilson and Swan, 2013) where they experience substantial, natural
fluctuations in water availability during the Austral dry-season, which
frequently lasts 3-4 months (May-August, Taylor and Tulloch, 1985).
Egg development and oviposition typically occurs towards the end of
the dry season so that eggs hatch at the start of the wet season. As
capital breeders, females accumulate energy resources over a long
duration (typically in excess of a year) and utilize the resultant lipid
reserves to support the reproductive effort from vitellogenesis through
egg brooding (Stephens et al., 2009). However, a lack of free-standing
water during the period of egg development results in considerable
challenges to female water balance (Brusch et al., 2017). Coupled with
a lack of available water to support themselves, reproductive females
face additional water requirements associated with egg development
(Deeming, 2004; Lourdais et al., 2015). In the weeks just prior to ovi-
position, in the absence of free-standing water in the environment, fe-
males must transfer substantial amounts of body water to their eggs
(Stahlschmidt et al., 2011) and this can dramatically challenge female
water balance (Brusch et al., 2017).
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2.2. Experimental design

All work was conducted under the oversight of the Arizona State
University Institutional Animal Care and Use Committee (protocol #
17-1532R). Snakes used for this study were part of a long-term colony
at Arizona State University, AZ, USA, and were housed individually in
91 x 71 X 46 cm cages (Freedom Breeder, Turlock, CA, USA). Snakes
were deprived of food from the onset of overwintering until oviposition
(~5 months) because they typically do not eat when reproductively
active. To stimulate the reproductive cycle, snakes were over-wintered
for six weeks from mid-December through January (light-dark cycles of
6:18 h and a daily temperature cycle of 20:15 °C that changed in con-
junction with the light cycle). During the 6-hr light phase a supple-
mental sub-surface heat source was provided under one end of each
cage to allow for thermoregulation. After overwintering, room tem-
perature was increased to a constant 31.5 °C, which is the preferred
temperature of gravid Children’s pythons (Lourdais et al., 2008), with a
12:12 h light-dark cycle and no supplemental heat provided. Females
were held at a constant temperature without the opportunity to ther-
moregulate to prevent temperature-based difference resulting from
differential thermoregulation between treatment groups.

Females were randomly assigned to either the reproductive
(n = 19) or non-reproductive groups (n = 16). Females in the re-
productive group were exposed to a different male every 2-3 days,
resulting in each reproductive female being sequentially housed with
6-8 males during this 18-day breeding period. Each non-reproductive
female was yoked to a reproductive female of similar body mass so that
the timing of its treatments, measurements, and sampling coincided
with that of the reproductive female to which it was yoked. At ovula-
tion (based on a peri-ovulation shed, Lourdais et al., 2008), half of the
reproductive females, and their yoked partners, were deprived of water
until the reproductive female laid her eggs (22 + 1 d). Deprivation of
water during this time leads to ecologically relevant levels of dehy-
dration (Brusch et al., 2018). Treatment groups were: gravid with water
provided ad libitum (number of females, mean mass = SEM, and
plasma osmolality at the end of the experiment = SEM: n = 9,
464 + 28 g, 324 *= 5 mOsm kg™'), non-reproductive with water
provided ad libitum (n = 8,414 = 18¢g,297 = 4mOsm kg™ '), gravid
with no water provided (n = 10, 424 + 41 g, 354 = 3 mOsm kg™ 1),
and non-reproductive with no water provided (n = 8, 423 * 33 g,
340 = 4 mOsm kg™ 1).

2.3. Blood sampling and analyses

We used heparinized 1 ml syringes with a 25 gauge X 1.6 cm (5/8
in) needle to collect a 0.8 ml blood sample via cardiocentesis. Blood
samples were collected from females once the reproductive female of
the yoked partners reached late vitellogenesis (20 mm follicles de-
termined by ultrasonographic examination, Sonosite MicroMazz,
Bothell, WA, USA) and again when it reached late gravidity (twenty
days after periovulation ecdysis and 1-4 days prior to oviposition).
Total time for capture, restraint, and blood collection was typically less
than three minutes and did not exceed seven minutes, which is less than
the time required to detect measurable CORT concentration changes in
squamates (Romero and Wikelski, 2001). To control for potential cir-
cadian fluctuations in CORT concentrations, all blood samples were
collected between 0900 and 1100 h. We immediately centrifuged the
blood samples at 3000 rpm for three minutes to separate plasma from
blood cells. We aliquoted plasma (~50 pl) into separate vials that were
then frozen at —80 °C. From the collected blood samples, we measured
plasma CORT concentration as well as plasma osmolality (based on
triplicate analysis using a vapor pressure osmometer, #5600, Wescor
Inc., Logan, UT, USA) and circulating concentrations of glucose as a
metric of circulating energy resources (blood glucose meter,
#EG220546, Medline Industries, Northfield, IL, USA).

Plasma CORT concentrations (ng ml~!) were determined at the
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Centre d’Etudes Biologiques de Chizé (CEBC) following a well-estab-
lished radioimmunoassay protocol (Lormée et al., 2003). The sample
dilution curve in assay buffer was parallel to the standard curve, sug-
gesting that the assay is specific for A. childreni with limited inter-
ference. We used a polyclonal anti-CORT antibody produced in rabbit
whole antiserum (C 8784, Sigma-Aldrich, St Louis, MO, USA). Cross-
reactions of the anti-CORT antibody were: 11-deoxycorticosterone
20%, progesterone 15.7%, 20a-hydroxyprogesterone 8.8%, testos-
terone 7.9%, 20B-hydroxyprogesterone 5.2%, cortisol 4.5%, aldos-
terone 4.4%, cortisone 3.2%, androstenedione 2.6%, 17-hydro-
Xyprogesterone 1.8%, 5a-dehydrotestosterone 1.4%,
androsterone < 0.1%, estrone < 0.1%, and estriol < 0.1%. The percent
retrievable fraction of CORT after diethyl ether extraction was greater
than 95% and all samples were run in duplicate (intra-assay variation:
8.05%, inter-assay variation: 9.79%).

2.4. Statistical analyses

We performed all statistical analyses in R, version 3.5.0. We checked
to ensure the data met the assumptions for parametric testing and used
transformations where necessary. First, we examined the effect of re-
productive status and water treatment on CORT values using repeated
measures analysis of variance (rmANOVA). We tested for three-way
interactions and used treatment (water or no water), status (re-
productive or non-reproductive), and sampling period (late-vitello-
genesis and late-gravidity bleeds) as fixed effects, and individual as a
random effect. We included parameters addressing potential size effects
by using a body condition index (BCI, standardized residuals from a
linear regression using mass and SVL). However, this variable was re-
moved from the final model as a result of stepwise removal using AAIC
and model weights (Arnold, 2010; Zuur et al., 2010). We used an
ANOVA to examine changes in CORT values between females in each of
the four groups (reproductive or non-reproductive, with or without
water from late-vitellogenesis to late-gravidity). We used a post-hoc
Tukey’s HSD test to determine which of the groups were significantly
different within and between time.

We then used linear regressions comparing the profiles among in-
dividuals to explore the relationships between CORT and osmolality or
glucose across both sampling periods. We first compared the relation-
ship by grouping all females together, regardless of treatment or status,
after which we separately explored the effects of treatment, status, and
the combination of the two. We next used variance partitioning
methods described by Anderson and Cribble (1998) to decompose our
full response into orthogonal subsets to examine how treatment (water
or no water) or status (reproductive or non-reproductive) affected the
relationship between CORT and osmolality or glucose and performed
similar linear regressions. Using methods described by Nakagawa and
Schielzeth (2013), we calculated a general measure of R? marginal R2
(RZ; 3, from our models to estimate the variance explained by CORT
and treatment, status, or a combination of the two.

We used the packages “nlme” and “multcomp” (Hothorn et al.,
2008; Pinheiro et al., 2018) for rmANOVA’s, “CAR” (Fox and Weisberg,
2011) for linear regressions, “MuMIn” (Barton, 2018) for estimates of
marginal R?, and “agricolae” (de Mendiburu, 2017) for post-hoc tests.
Significance was set at a = 0.05.

3. Results
3.1. Variation in CORT levels

We found significant main effects of sampling (F,3; = 25.08,
p < 0.001), status (F;3; = 26.69, p < 0.001), and treatment
(F1,31 = 4.41, p = 0.044). We also found significant sampling-by-re-
productive status (F;3; = 8.29, p = 0.007) and sampling-by-water
treatment (F; 3; = 5.32, p = 0.028) interactions (Table 1, Fig. 1A, B),
but no three-way interaction (F; 3; = 1.19, p = 0.283). A Tukey’s HSD
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Table 1

Statistical models used to examine corticosterone concentrations (ng mL™%,
CORT) in female Antaresia childreni during initial and final blood samplings
(session), that were either reproductive or non-reproductive (status) and had
continuous access to water or were water-restricted (treat) during the time
reproductive females were gravid.

Factors d.f. F ratio P value
intercept 1, 31 98.29 < 0.001
status 1,31 26.69 < 0.001
treat 1,31 441 0.044
session 1, 31 25.08 < 0.001
status X treat 1, 31 1.22 0.277
status X session 1,31 8.29 0.007
treat X session 1, 31 5.32 0.028
status X treat X session 1, 31 1.19 0.283
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Fig. 1. Average plasma corticosterone (CORT, ng mL~') concentrations mea-
sured in non-reproductive (NR) and reproductive (R) female Antaresia childreni
(A) that were held with (W) or without (NW) access to water (B) during the
duration of gravidity or its equivalent for non-reproductive yoked females.
Initial blood samples were collected when reproductive females were in late-
vitellogenesis, prior to water deprivation, and final blood samples were col-
lected at late-gravidity. Error bars represent + 1 SEM. Different letters indicate
significant differences between groups and blood samples (Tukey’s HSD post-
hoc test).

post-hoc test revealed that, while reproductive females initially had
higher CORT (mean * SEM; 16.77 + 1.67 ng mL™!) compared to
non-reproductive females (5.52 + 1.46 ng mL™ '), the difference was
more pronounced at the second sampling period
(42.28 *+ 6.72 ng mL™! and 11.75 * 4.84 ng mL™’, respectively;
Fig. 1A). At the start of the experiment, CORT values were comparable
in females with (11.08 =+ 216 ng mL™Y) and without
(12.15 + 2.06 ng mL ') water. However, water-deprived females had
much higher CORT (36.56 * 7.74 ng mL™1) at the time of the second
sampling period, compared to those who had water provided
(19.61 * 3.59 ng mL™!; Fig. 1B).

When examining changes in CORT, we found significant differences
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Fig. 2. Relationships between corticosterone (CORT, ng mL~') and plasma osmolality (mOsm kg~ ') measured in reproductive (R, n = 19; A, B) and non-re-
productive (NR, n = 16; C, D) female Antaresia childreni. Females were held with (W) or without (NW) access to water during the duration of gravidity (i.e., prior to
the second sampling point) or its equivalent for non-reproductive yoked females. Both sampling periods were combined for statistical analyses (see text for details)
and a line of best fit is included for significant relationships (p < 0.05). Closed circles represent initial blood sampling, while open circles represent final blood

sampling.

among groups (F33; = 493.19, p = 0.006). Specifically, a Tukey’s HSD
post-hoc revealed that water deprived reproductive females had sig-

nificantly greater (all p < 0.05) changes in CORT
(36.0 = 6.29 ng mL™') when compared to other females
(139 =+ 6.66 ng mL™', 100 * 6.84 ng mL™' and

2.5 + 1.15 ng mL~" for reproductive with water, non-reproductive
without water and non-reproductive with water, respectively). CORT
change was not significantly different between these three groups (all
p < 0.05).

3.2. Correlates of CORT levels

We found a significant positive relationship between CORT and
plasma osmolality (F; 34 = 34.20, p < 0.001, R3\y = 0.331) when
all females and sampling sessions were grouped together. When we
isolated the effects of treatment and status, we found a significant po-
sitive relationship between CORT and osmolality in reproductive fe-
males with (F1 g = 8.06, p = 0.022, R&yy = 0.321; Fig. 2A) and
without access to water from late vitellogenesis to late gravidity
(F1,0 = 22.05, p = 0.001, RZmm = 0.537; Fig. 2B), and in non-re-
productive females without access to water during a similar period
(F1, = 6.77, p = 0.035, R M = 0.311; Fig. 2C). We did not detect a
significant relationship in non-reproductive females with access to
water (p > 0.05; Fig. 2D).

When evaluating CORT and blood glucose, we did not detect a
significant relationship (p > 0.05) when all females were grouped
together. However, when we isolated the effects of treatment and
status, we found a significant positive relationship between CORT and
blood glucose in reproductive females, both those with (F; 5 = 8.45,
p = 0.019, RZ;mm = 0.332; Fig. 3A) and those without access to water
during gravidity (F; o = 7.41, p = 0.024, R3,ym = 0.266; Fig. 3B). We
did not detect a significant relationship in either of the non-

reproductive groups (p > 0.05; Fig. 3C, D).

4. Discussion

Throughout an organism’s lifetime, glucocorticoids play a funda-
mental role in responding to fluctuations in internal, biotic, and abiotic
conditions (Landys et al., 2006; Sapolsky, 2000). CORT is widely re-
cognized as an important hormone that mediates energy balance
(Landys et al., 2006; Romero, 2002; Sapolsky, 2000). For example,
growth (Belden et al., 2005; Cadby et al.,, 2010; Hayward and
Wingfield, 2004), reproduction (Angelier et al., 2009; Love et al., 2014;
Moore and Jessop, 2003), and migration (Cease et al., 2007; Eikenaar
et al.,, 2014) are, in part, regulated through the dynamic actions of
CORT. A large body of literature on rodents has also recognized mi-
neralocorticoid-like effects of CORT (Bartter and Forman, 1962; Bidet
et al., 1987; Schultz, 1998). The potential role of CORT in regulating
salt and water balance has attracted far less attention in other taxa
(Vera et al., 2017). Our results provide evidence that increased CORT is
contextually linked to both reproduction and plasma osmolality in an
ectotherm.

At the time of the first blood sampling, all females had access to
water and the reproductive females were in late vitellogenesis, which is
the period of peak energetic investment in oviparous taxa (Stephens
et al., 2009). The reproductive females had higher CORT compared to
their non-reproductive yoked partners (Fig. 1A), and this is not sur-
prising when considering the classic, energy-centric view of CORT
(Romero, 2002). As capital breeders, Children’s pythons rely on internal
reserves to fuel reproductive investment during vitellogenesis and in-
creased CORT allows females to mobilize internal resources to fund the
creation of energy-rich vitellogenin (Jaatinen et al., 2013). As expected,
non-reproductive females, which had relatively low energetic demands
during the same time-period, had substantially lower CORT levels.
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Fig. 3. Relationships between corticosterone (CORT, ng mL~!) and glucose (mg dL~!) measured in reproductive (R, n = 19; A, B) and non-reproductive (NR,
n = 16; C, D) female Antaresia childreni during the experiment. Females were held with (W) or without (NW) access to water during the duration of gravidity (i.e.,
prior to the second sampling point) or its equivalent for non-reproductive yoked females. Both sampling periods were combined for statistical analyses (see text for
details) and a line of best fit is included for significant relationships (p < 0.05). Closed circles represent initial blood sampling, while open circles represent final

blood sampling.

In contrast with the high energetic demands of vitellogenesis, re-
productive females during late-gravidity had already completed a ma-
jority of their energetic investment but were divesting considerable
amounts of internal water to their developing eggs (Stahlschmidt et al.,
2011). Regardless of water availability, reproductive females had the
highest CORT levels during late-gravidity, despite lower energetic re-
quirements at this time compared to late vitellogenesis (Fig. 1A). These
findings are in contrast with the CORT-energy allocation relationship
(Romero, 2002), yet increased CORT has been associated with later
stages of pregnancy in other species (Dauphin-Villemant and Xavier,
1985; Lind et al., 2010; Lorioux et al., 2016; Schuett et al., 2005). In-
creased CORT levels may also be associated with maternal physiolo-
gical and behavioral shifts associated with gravidity (Lourdais et al.,
2008). This period of embryonic development is particularly sensitive
to thermal variation and females shift their activity to increase body
temperatures (Lorioux et al., 2012). Additionally, CORT may serve as a
hormonal stimulus for females to oviposit (Taylor et al., 2004), which
may explain why CORT is at its highest in late gravid females.

We found significant positive relationships between CORT and
blood glucose, which is also in line with the classic role of CORT as a
mediator of energy levels (Romero, 2002). However, this relationship
appears to be context dependent. It was only after parsing our data into
treatment groups that we detected any significant relationships. We
found significant relationships in reproductive females (Fig. 3A, B), but
not in non-reproductive females (Fig. 3C, D), regardless of water
availability. Previous research has found that female Children’s pythons
are able to preferentially catabolize muscle during gravidity to sustain
the demands of reproduction (Lourdais et al., 2013) and that muscle
catabolism increases with water deprivation (Brusch et al., 2018). This,
coupled with data from our study, emphasizes that these relationships
(i.e., CORT and glucose levels or increased muscle catabolism) may
only be detectable during periods of high physiological burden such as

what occurs when an organism must face simultaneous challenges (e.g.,
reproduction and dehydration).

Reproductive females in our study with ad libitum access to water
had significant increases in plasma osmolality (average osmolality in-
crease: 37 mOsm kg~ ') compared to their non-reproductive yoked pairs
(6 mOsm kg™ 1) likely due to the considerable hydric demands of egg
production. These increases were not significantly different from non-
reproductive females without water access (44 mOsm kg_l) that had
the hydric challenge of living without water. Reproductive females
without access to water during gravidity were faced with the combined
hydric challenges of reproduction and water deprivation, and subse-
quently had the largest plasma osmolality increases during the experi-
ment (66 mOsm kg_l; Brusch et al., 2018). Increases in CORT
throughout the experiment followed comparable trends with non-re-
productive, water-provided females having the smallest change
(average CORT increase: 2.5 ng mL ™), non-reproductive without water
and reproductive with water in the middle (10.0 ng mL™' and
13.9 ng mL™?, respectively), and reproductive without water during
gravidity having the largest change (36.0 ng mL ™).

We found a strong relationship between CORT and plasma osmol-
ality, although, as with the rest of our results, it appears to be context
dependent. When we examined the influence of reproductive status and
water availability on osmolality, we found that CORT explained 54% of
the variance in reproductive females without access to water during
gravidity. The low metabolic demands of the non-reproductive females
enabled us to examine the relationship between CORT and plasma os-
molality (i.e., hydration) independent of the high energetic demands.
Non-reproductive females showed increases in CORT when they were
deprived of water, and we found a significant positive relationship
between hyperosmolality (dehydration) and CORT (Fig. 2C). Juxta-
posed against these results, we did not detect any similar increases or a
significant relationship in non-reproductive females with water
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provided (Fig. 2D). While non-reproductive females in our study were
exposed to a constant temperature approximately 2.5 °C above their
preferred body temperature (Lourdais et al., 2008), this was not enough
to impact their CORT levels.

Our results from an ectotherm appear to be in congruence with
decades of research in rodents that show CORT has important miner-
alocorticoid actions involved in water balance (see de Kloet et al., 2000;
Joéls, 1997 for review). Unlike previous studies (Dupoué et al., 2014;
Moeller et al., 2017), we found that dehydration induced a CORT in-
crease in non-reproductive females. Also in contrast with recent studies
(Dupoué et al., 2016; Lorioux et al., 2016), our data suggest that CORT
is linked to both energy and water balance. Our study controlled for a
fundamental factor in heterothermic taxa, temperature, which may
explain the discrepancy between previous results and ours. Organisms
often alter their thermal preference based on their internal state. For
example, dehydrated tiger snakes (Notechis scutatus) have reduced
preferred temperatures, likely in an attempt to reduce water loss
(Ladyman and Bradshaw, 2003). Such thermal adjustments may also
impact other physiological functions including hormone production
and release. Given that temperature and the availability of resources
are predicted to dramatically fluctuate due to climate change, further
work is needed to better understand the potential inter-relationship
among CORT, energy, and water balance.
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