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Abstract
The invasion of habitats with novel environmental challenges may require physiological tolerances not seen in conspecifics 
from the native range. We used a combination of field and laboratory-based experiments to assess physiological tolerance to 
limited water access at four sites distributed across the historical invasion path of cane toads (Rhinella marina) in Australia 
that, from east to west, alternated between mesic and seasonally xeric habitats. Toads from all locations were well hydrated 
at the time of capture. However, experimental dehydration caused greater mass loss, higher plasma osmolality, and inhibition 
of lytic ability in toads from xeric compared to mesic locations. These results suggest somewhat surprisingly that toads from 
xeric environments are physiologically more vulnerable to water loss. In contrast, bactericidal ability was not sensitive to 
hydric state and was greater in toads from eastern (long-colonized) areas. Similar patterns in lytic ability in hydrated toads 
and agglutination ability in wild toads suggest that toads along the invasion front face a tradeoff between enhanced dispersal 
ability and physiological responses to dehydration. The ability of this invasive species to spread into drier environments may 
be underpinned by a combination of phenotypic plasticity and evolved (heritable) traits.
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Introduction

Invasive species can perturb biotic communities, especially 
in areas where the invader and the native taxa have substan-
tially different eco-evolutionary histories (Donohue et al. 
2013; Simberloff et al. 2013; Dick et al. 2017). Despite the 
impact of invasive species, physiological mechanisms that 

underpin extensive range expansion are little understood, 
especially when the invader moves into areas that expose it 
to conditions more extreme than in its natural habitat (Sex-
ton et al. 2009). Cane toads (Rhinella marina) have success-
fully invaded over 150 countries, and are among the most 
intensively studied colonizing species (Shine 2010; Pizzatto 
et al. 2014). Nonetheless, there remain substantial gaps in 
our understanding of physiological mechanisms which have 
allowed toads from stable warm, moist climates in Latin 
America to successfully invade severely xeric areas of Aus-
tralia (Tingley et al. 2014; Kosmala et al. 2018).

Cane toads were introduced into northeastern Australia in 
1935 as a potential pest control agent (Lever 2001). Based 
on environmental characteristics of their native habitats, it 
was assumed that spread of these toads in Australia would 
be restricted by limited water availability and high tempera-
tures (Sutherst et al. 1996). However, the toads’ range in 
Australia has expanded considerably, and they have moved 
from relatively seasonal east-coast environments into the 
wet–dry tropics of the Northern Territory and Western Aus-
tralia where extended seasonal drought occurs (Phillips et al. 
2007). Models based on these advances project an almost 
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tripling of the toads’ range in the near future (Urban et al. 
2007).

Within Australia, cane toads and native species with 
which they interact are undergoing rapid evolutionary 
change (Tingley and Shine 2011; Shine 2012; Pizzatto et al. 
2013; Brown et al. 2014), generating substantial differences 
between individuals at the invasion front compared to indi-
viduals at the range core (Lindstrom et al. 2013; Hudson 
et al. 2016). Cane toads at the invasion front have been 
shown to rapidly acclimatize to temperature regimes previ-
ously thought to be too cold (McCann et al. 2014, 2018). 
Those inhabiting drier regions of Australia exhibit dramatic 
fluctuations in plasma osmolality (250–370 mOsm kg−1, 
Reynolds and Christian 2009). Desiccation risk reduces dis-
persal of juvenile cane toads (Child et al. 2009) but, despite 
presumed constraints due to lack of water, cane toads are 
physiologically acclimating to invade semi-arid regions of 
Australia (Tingley and Shine 2011; Tingley et al. 2012; Kos-
mala et al. 2018). Indeed, the cane toad invasion is expand-
ing more rapidly as it moves through drier habitats (Phillips 
et al. 2006).

Exploring physiological traits that enable toads to expand 
their range into xeric areas may help us to predict the extent 
of the species’ eventual distribution. Although a few stud-
ies have examined the role of immune function in the inva-
siveness of cane toads (Llewellyn et al. 2011; Brown and 
Shine 2014; Brown et al. 2015a, b), the interaction between 
immune function and hydric state has remained unstudied. 
Water is a fundamental, non-energetic resource that can 
modulate immune function. Enhanced immune function in 
response to dehydration has been documented in an inverte-
brate (Hoang 2007) and multiple squamates (Moeller et al. 
2013; Brusch et al. 2017; Brusch and DeNardo 2017).

Many animals maintain a plasma osmolality of approxi-
mately 300 mOsm kg−1 (Stockham and Scott 2013) even 
during periods when they do not drink (Ramsay and 
Thrasher 1984). Juxtaposed against these norms are terres-
trial amphibians, which typically have a low resistance to 

transcutaneous water loss (Young et al. 2005). As a result, 
many species in dry environments are constantly at risk of 
desiccation due to the inability to balance water influx with 
water efflux (Hillman 1980). Accordingly, many terrestrial 
amphibians tolerate high osmolality values that are indica-
tive of dehydration (Zug and Zug 1979; Reynolds and Chris-
tian 2009). This makes terrestrial amphibians particularly 
interesting for studying the relationship between hydration 
state and immune function.

We used four Australian sites distributed across the his-
torical invasion path of cane toads that, from east to west, 
alternated between mesic and seasonally xeric habitats 
(Fig. 1). We evaluated indicators of physiological tolerance 
to limited water access and used these results to explore 
inter-populational differences. We hypothesized that cane 
toads invading xeric habitats have a greater physiological 
tolerance to limited water access. Accordingly, we pre-
dicted that tolerance to water limitations and modification 
of dehydration sensitivity of immune function progressively 
changes from east to west. Alternatively, cane toad dehydra-
tion tolerance and effects on immune function is a result of 
plasticity, which would be indicated by performances reflect-
ing the hydric environment in which the toads live (mesic vs. 
xeric) rather than the historical progression of the invasion 
across the sites.

Methods

All procedures were approved by the Arizona State Univer-
sity Institutional Animal Care and Use Committee (proto-
col #16-1495R), the University of Sydney Animal Ethics 
Committee (protocol #2016/997), and the Charles Darwin 
University Animal Ethics Committee (protocol #A16010).

Fig. 1   Four study locations 
across the historical invasion 
path (year of arrival) of cane 
toads in Australia that alternated 
between mesic (black star) 
and seasonally xeric (red star). 
Annual rainfall map for 2016 
modified from the Australian 
Bureau of Meteorology (http://
www.bom.gov.au/clima​te)

http://www.bom.gov.au/climate
http://www.bom.gov.au/climate
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Study species and sites

Cane toads are large (to > 1 kg) toxic bufonid anurans that 
are native to tropical and subtropical areas of the Ameri-
cas. After being introduced to northeastern Australia in 
1935, cane toads spread across almost one-quarter of the 
Australian continent (Kearney et  al. 2008; Urban et  al. 
2008; Tingley et al. 2016). We collected toads during June 
and July of 2016 in the midst of the tropical ‘dry-season’ 
(May–October) when rainfall is scarce or absent (Shine and 
Brown 2008). Toads were collected from four locations: (1) 
Cairns, Queensland [QLD; average rainfall and mean daily 
maxima during June–July = 38.9 mm/26 °C (Australian 
Bureau of Meteorology, http://www.bom.gov.au/clima​te)] 
the mesic environment where the species was first intro-
duced to Australia. (2) Cape Crawford, Northern Territory 
(CC 1.2 mm/30 °C), an arid area along the southern edge 
of the Gulf of Carpentaria where the cane toad invasion 
slowed in the 1980s apparently as a result of arid condi-
tions (Tingley et al. 2012). (3) Middle Point, Northern Ter-
ritory (MP 0.5 mm/32 °C), a wet–dry tropical site along 
the Adelaide River that receives high annual precipitation 
(~ 1400 mm) that provides constant access to water for toads 
(Warfe et al. 2011) even during June and July when little 
precipitation occurs. (4) Wave Hill, Northern Territory (WH 
0.2 mm/29 °C), the arid habitat near the leading edge of 
the species’ current range (Phillips et al. 2006). Over the 
last 20 years, cane toads have rapidly expanded their range 
despite the aridity of the area (González-Bernal et al. 2012).

Field‑based experiment

To evaluate variation in plasma osmolality and innate 
immune function of cane toads across their Australian range, 
blood samples (see details below) were collected from ten 
adult toads at each of the four sites during the dry season 
(June and July). Toads were captured by hand between 1800 
and 2100 hours when toads typically emerge from their day-
time refugia to begin nocturnal activity. For consistency, all 
toads were captured > 5 m from any visible water source and 
toads were not selected if they had moist skin (suggesting 
they had just exited the water). Upon capture, we determined 
mass, sex, and snout–vent length (SVL), and a blood sample 
was collected (see details below). For all samples, plasma 
osmolality was determined using a vapor pressure osmom-
eter (± 3 mOsm kg−1; model 5100C; Wescor Inc., Logan, 
UT, USA). Samples were run in triplicate as described in 
Davis and DeNardo (2009). Additionally, a suite of plasma-
based immune function assays was performed on samples 
(see details below).

Laboratory‑based experiment

To determine whether there is a causal effect of osmolality 
on innate immunity, 20 toads from each site (total 80) were 
captured by hand and temporarily held in wet cloth bags. 
Mass, sex, and snout-vent length were recorded before toads 
were housed individually in 30 × 20 × 20-cm plastic contain-
ers filled with ~ 4 cm of water to enable them to hydrate over-
night (Hillyard et al. 1998). After 12–14 h, blood samples 
were collected from ten of the hydrated toads from each site 
(total 40). The remaining ten toads from each site (total 40) 
were moved to individual plastic containers without access 
to food or water and allowed to dehydrate for 120 h (5 days) 
to reach an ecologically relevant level of dehydration based 
on previously published work (360 mOsm kg−1; Reynolds 
and Christian 2009). Containers were held at ambient tem-
perature with natural light from rooftop windows. All toads 
were weighed every 24 h to evaluate rate of dehydration as 
change in mass is a good proxy for water loss in amphibians 
because of their very low metabolic rate. No toads showed 
clinical signs of dehydration (lethargy, slow righting reflex) 
or lost more than 35% of their body mass. After the 5-day 
dehydration period, toads were weighed and a blood sample 
was collected for determining osmolality and performing 
immune function assays.

Blood sample collection

Prior to blood sample collection, all toads were euthanized 
with an overdose of sodium pentobarbital (50% Lethabarb 
diluted in water: Pizzatto et  al. 2013). Blood samples 
(0.8 ml) were collected via cardiocentesis using heparin-
ized 1-ml syringes with a 25-gauge × 1.6-cm (5/8 in.) needle. 
Total time for capture, restraint, and blood collection was 
typically less than 5 min and did not exceed 8 min in either 
lab or field procedures. Blood samples were immediately 
centrifuged at 3000 rpm for 3 min to separate plasma from 
blood cells. Plasma samples were aliquoted (~ 50 µl) into 
separate vials and frozen at − 80 °C until they were used 
(within 21 days) to measure plasma osmolality and evaluate 
immune function.

Immune function assays

To examine immunocompetence, we performed several 
plasma-based innate immune function assays. Although 
amphibians possess both innate and adaptive immunities 
(Chen and Robert 2011), we focused on innate immune 
components for logistical reasons.

To evaluate the involvement of complement (C′) and 
natural antibodies (NAbs) in reacting to a novel, eukaryotic 
antigen, we used sheep red blood cells [(SRBC); SB050, 
Thermo Fisher Scientific, Scoresby, VIC, Australia] to 

http://www.bom.gov.au/climate
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quantify agglutination and lysis, which are standard meas-
ures of soluble constitutive immunity (Matson et al. 2005). 
Briefly, 20 µl of plasma was serially diluted with phosphate-
buffered saline (PBS) along a row of a 96-well plate, after 
which 20 µl of 1% SRBC was added to each well. Plates 
were incubated at 37 °C for 90 min and then placed at room 
temperature (~ 25 °C) for 20 min after which point they 
were scanned at 600 dots per inch (Hewlett-Packard Co., 
ScanJet 3670) for agglutination images. After an additional 
70 min, plates were centrifuged for 5 min (500 rpm, Sor-
vall, Newtown, CT, USA) and the supernatant was dispensed 
into a clean 96-well plate. Absorbance values were meas-
ured (405 nm, Bio-Rad, Hercules, CA, USA) to calculate 
lysis scores. Hemolytic-complement activity was expressed 
in CH50 units ml plasma−1, where 1 CH50 unit equals the 
reciprocal of the dilution of plasma required to lyse 50% of 
the SRBC.

Bactericidal activity was also assessed to determine the 
ability of cane toad plasma to kill a prokaryotic microor-
ganism (French and Neuman-Lee 2012). For this assay, 
Escherichia coli, a Gram-negative bacteria that has been 
previously reported in wild populations of cane toads (Shil-
ton et al. 2008) was used to provide ecological relevance. In 
brief, 1:4 plasma dilution with CO2-independent media plus 
4 nm l-glutamine, 105 colony-producing units of E. coli (Lot 
#483-306-1, ATCC 8739, MicroBioLogics, St. Cloud, MN, 
USA), and agar broth were combined on a 96-well micro-
plate. Absorbance values were measured (300 nm, Bio-Rad, 
Hercules, CA, USA) immediately and again after 12 h of 
incubation at 37 °C. Bactericidal ability percentages were 
calculated as the mean number of colonies for each sample, 
run in triplicate, divided by the mean number of colonies for 
the positive control, and then multiplied by 100. Together, 
these three assays provided a detailed assessment of innate 
immune function that could be used to compare popula-
tions in terms of immunocompetence and the sensitivity of 
immune function to hydration state.

Statistical analyses

To explore physiological responses to water deprivation, we 
used linear mixed-effect models to compare total water loss 
(i.e., initial mass − final mass) of the captive toads from all 
four populations. Location was used as a fixed effect and 
SVL as a random effect (to remove any potential confound-
ing influence from surface-area-to-volume ratios). Initially, 
analyses were carried out separately based on size on either 
body mass or SVL. However, these analyses yielded quali-
tatively identical results and, therefore, the reported analyses 
are based on SVL only. The data were checked to ensure they 
met the assumptions for parametric testing, transformations 
were used where necessary, and the agricolae package (de 
Mendiburu 2017) was used for post hoc tests.

To quantify sources of variation in osmolality values and 
immune scores, we used multimodel inference to estimate 
the most likely values of means and standard deviations 
for each dependent variable using the full-average method 
(Burnham and Anderson 2002). Size, sex, treatment, and 
location were used as categorical fixed factors. Using the 
nlme (Pinheiro et al. 2018) and MuMln libraries (Bartoń 
2015), the R Statistical Software (version 3.3.2; R Develop-
ment Core Team 2016) was used to fit all possible models, 
including potential possible interactions between fixed fac-
tors. The Akaike information criterion (AICc) and Akaike 
weight (wi) of each model (see Online Resource 1–4) were 
calculated to determine the best model. Finally, we used 
multimodel averaging following Burnham and Anderson 
(2002) to calculate the weighted average of each parameter 
using estimates from all models. These resulting values were 
used to calculate the most likely mean and standard devia-
tions for each parameter.

Results

Location had a significant effect on physiological responses 
to water deprivation (F3,3 = 10.81, P = 0.04), whereby toads 
from WH and CC had the highest average water losses over 
the 5-day dehydration treatment (Fig. 2). Treatment and 
location had the greatest effects on plasma osmolality, lysis, 
agglutination, and bactericidal ability. Although toads from 
all locations had higher plasma osmolality after dehydra-
tion, the difference in osmolality between hydrated versus 
dehydrated treatments on average were 88% and 16% greater 
in toads from WH (mean ± SD = 81 ± 20  mOsm  kg−1) 

Fig. 2   Average total loss in mass (g) after 5  days without food and 
water measured in cane toads from mesic (solid) and xeric (striped) 
populations distributed across the historical invasion from east 
(Cairns, Queensland) to west (Wave Hill, Northern Territory) in Aus-
tralia. Groups that share the same letter did not have statistically sig-
nificant differences in means. Error bars represent ± 1 SD
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compared to MP (43 ± 21  mOsm  kg−1), and QLD 
(70 ± 19 mOsm kg−1), respectively (Fig. 3). Although there 
was an expected relationship between size and plasma osmo-
lality at each site during the dehydration treatment (Online 
Resource 5), likely reflecting a surface-area-to-volume 
ratio effect, there was no detectable influence of body size 
on osmolality in the field or after the hydration treatment. 
There was also no significant relationship when dehydra-
tion treatment data were pooled from all locations (Online 
Resource 6), further emphasizing the importance of location 
on plasma osmolality post-desiccation. Similarly, the differ-
ence in plasma osmolality of toads in the hydration versus 
dehydration treatments from CC (103 ± 20 mOsm kg−1) 

were 47% and 139% greater than in toads from QLD and 
MP, respectively (Fig. 3). Plasma osmolality of toads in the 
field and toads after the hydration treatment was nearly iden-
tical for all locations.

Agglutination scores were higher for toads in the field 
than for toads after experimental hydration, which were 
higher in turn than were scores for toads after dehydra-
tion (except for the MP population where agglutination 
was relatively similar among the three groups; Fig. 4). 
Because agglutination scores varied within popula-
tions and within treatment groups, our results should 
be interpreted cautiously. Toads from all locations had 
decreased lysis scores after dehydration. However, lysis 

Fig. 3   Plasma osmolality 
(mOsm kg−1) of cane toads 
increased after the dehydra-
tion treatment, but was similar 
for toads in the field and toads 
after hydration treatment. Toads 
from xeric populations (Wave 
Hill and Crape Crawford) had 
larger increases in osmolal-
ity as a result of dehydration 
than did toads from mesic 
populations (Middle Point and 
Cairns). Gray circles represent 
plasma osmolality of individual 
toads by treatment (F = field; 
H = experimentally hydrated; 
D = experimentally dehydrated). 
Black horizontal lines denote 
means and error bars denote 
standard deviations estimated 
from multimodel averaging

Fig. 4   Agglutination scores of 
cane toads showed a stepdown 
pattern, where toads in the 
field had higher scores than 
experimentally hydrated toads, 
and both had higher scores 
than experimentally dehydrated 
toads. Gray circles repre-
sent agglutination scores of 
individual toads in a treatment 
(F = field; H = experimentally 
hydrated; D = experimentally 
dehydrated). Black horizontal 
lines denote means and error 
bars denote standard deviations 
estimated from multimodel 
averaging
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scores decreased, on average, 25% more in toads from 
WH (5.2 ± 3.6 CH50) and 75% more in toads from CC 
(7.0 ± 3.8 CH50) compared to toads from MP (4.0 ± 3.4 
CH50) and QLD (4.1 ± 3.7 CH50) (Fig. 5). In contrast, 
bactericidal ability showed little change among treatment 
groups. There was a clear effect of location, although 
unlike the pattern in osmolality and lysis values, bac-
tericidal ability averaged 125% and 150% higher in the 
QLD (39.5 ± 10.5% bacteria killed) populations compared 

to the MP (17.5 ± 10.3% killed) and WH (14.6 ± 10.4% 
killed) populations, respectively. Similarly, toads from 
CC (36.7 ± 10.3% killed) had a 110% and 151% higher 
average bactericidal ability compared to MP and WH, 
respectively (Fig. 6).

Fig. 5   Lysis scores (CH50) of cane toads were similar for toads in 
the field and toads after the hydration treatment, but decreased after 
the dehydration treatment. Toads from xeric populations (Wave Hill 
and Crape Crawford) had larger decreases after the dehydration treat-
ment compared to toads from mesic populations (Middle Point and 
Cairns), and toads closer to the invasion origin (Cairns and Cape 

Crawford) had higher scores, in general, than those closer to the inva-
sion front (Middle Point and Wave Hill). Gray circles represent lysis 
scores of individual toads in a treatment (F = field; H = experimen-
tally hydrated; D = experimentally dehydrated). Black horizontal lines 
denote means and error bars denote standard deviations estimated 
from multimodel averaging

Fig. 6   Bactericidal ability (% 
bacteria killed) of cane toads 
were similar for toads in the 
field, after hydration, and after 
dehydration. Toads closer to 
the invasion origin (Cairns and 
Cape Crawford) had higher 
scores than those closer to the 
invasion front (Middle Point 
and Wave Hill). Gray circles 
represent bactericidal ability 
values of individual toads in a 
treatment (F = field; H = experi-
mentally hydrated; D = experi-
mentally dehydrated). Black 
horizontal lines denote means 
and error bars denote standard 
deviations estimated from mul-
timodel averaging
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Discussion

Cane toads from seasonally xeric populations had larger 
increases in plasma osmolality after 5 days without water, 
which, coupled with larger decreases in mass (see Figs. 2, 3), 
suggests that toads from these populations are more prone 
to evaporative water loss (EWL). This pattern runs counter 
to the typical situation whereby animals adapted to living in 
xeric environments have reduced rates of EWL (reptiles—
Dmi’el 2001; Cox and Cox 2015; bats—Muñoz-Garcia et al. 
2016), thereby conserving water in drier climates. However, 
our results are consistent with a previous study (Tingley 
et al. 2012) that found the opposite to be true in cane toads; 
animals from xeric environments had increased desiccation 
rates due to higher EWL compared to toads from mesic envi-
ronments. This counter-intuitive result may reflect a reliance 
on access to standing water by toads from xeric populations, 
which places a selective premium on the ability to rapidly 
absorb water if it becomes available (Tingley et al. 2012). 
Differences in resistance to EWL between mesic and xeric 
populations have also been documented in other neotropical 
toads (Prates and Navas 2009; Prates et al. 2013; Anderson 
et al. 2017), suggesting that dehydration rate is a relatively 
plastic trait.

Plasma osmolality was similar for toads from the wild 
(regardless of location) and after experimental hydration. 
Thus, despite drastically different temperature and rain-
fall patterns among the sites, cane toads in the wild tend to 
remain hydrated. Although we avoided collecting toads that 
had recently emerged from water or wet substrate, collecting 
animals at the beginning of their nocturnally active period 
may have inadvertently sampled animals when they were at 
an optimal hydric state, after emerging from moist refugia 
(Schwarzkopf and Alford 1996). However, soil moisture 
levels during the Austral dry season would presumably be 
low enough to garner no net hydric benefit to the cane toads 
(Seebacher and Alford 1999). In arid parts of Australia, cane 
toads remain active when there is no rainfall, although they 
limit their activity to areas with permanent water sources 
(Brown et al. 2011). While toads in their native habitat come 
out only at night to forage and rehydrate, invasive toads in 
arid regions come out throughout the day to soak up water, 
and go back underground until coming out to forage at night 
(Webb et al. 2014). Behavioral flexibility to remain hydrated 
might explain our results, and the existence of toads in xeric 
environments likely relies on them finding sporadically 
located water resources.

Previous research has shown a positive relationship 
between dehydration and immune performance in a variety 
of taxa (snakes—Brusch and DeNardo 2017; flies—Hoang 
2007; lizards—Moeller et al. 2013). In contrast to those 
results, toads from all four of our populations had decreased 

lytic abilities when dehydrated. Similar to the greater lab-
based water loss rates observed in toads from xeric habi-
tats, dehydration caused a greater inhibition of lysis (i.e., 
hydrated lysis score − dehydrated score) in toads from xeric 
populations. These two results surprisingly suggest that 
toads from more xeric environments are physiologically 
more vulnerable to water loss. This possibility is consistent 
with previous work that has shown that amphibians are more 
susceptible to disease during droughts (Kiesecker and Skelly 
2001; Adams et al. 2017) and parasitic infections are high-
est in xeric habitats, especially during dry seasons (Pizzatto 
et al. 2013; Laverty et al. 2017).

Bactericidal ability was not sensitive to hydration treat-
ment (i.e., at each of the four sites, hydrated and dehydrated 
toads had similar killing ability). However, bacterial kill-
ing was greater in the two eastern populations compared to 
the western populations. These bactericidal results are in 
contrast with previous research that found toads from the 
western edge of their expansion had higher bactericidal abil-
ity compared to toads from the range core in Queensland 
(Brown et al. 2015a, b); however, these previous results were 
from captive-raised toads which had not been exposed to 
ecologically relevant influences on immune performance in 
cane toads such as pathogen pressure (Brown et al. 2015a, 
b) and trade-offs with activity (Brown and Shine 2014). For 
example, higher levels of activity among wild cane toads 
(typical of invasive populations) are associated with reduced 
ability to kill E. coli (Brown and Shine 2014). The inter-
populational pattern in our bacterial killing results is also 
seen with the lysis scores of hydrated toads (whether natu-
rally or experimentally hydrated) and agglutination of field-
sampled toads (Figs. 3, 4). Additionally, decreased immune 
performance correlates with higher disease prevalence in 
toads at the xeric expansion front (Brown et al. 2007; Shilton 
et al. 2008), and similar immunosuppressive effects of range 
expansion have been documented in other invasive species 
(Silva-Rocha et al. 2015; Martin et al. 2017; Riddick et al. 
2017). Stressful conditions or activities near the expanding 
range edge might increase levels of glucocorticoids (e.g., 
corticosterone) which could suppress immune performance 
in invasion front populations (Goetz et al. 2017).

Reduced immunocompetence in individuals at the inva-
sion front may reflect a tradeoff with morphological changes 
that enhance dispersal ability (Phillips et al. 2006; Hudson 
et al. 2016). Individuals along an invasion front disperse 
the greatest distances (Alford et al. 2009) and this might 
reduce immune capacities due to physically demanding 
movement (Freidenreich and Volek 2013; Brown and Shine 
2014). Alternately, individuals at the invasion front may face 
fewer potential pathogens (Perkins et al. 2013), dampening 
immune responses (Devalapalli et al. 2006), a phenomenon 
that can be rapidly reversed within an individual’s lifetime 
(Montecino-Rodriguez et al. 2013). Further work is needed 
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to better understand the relationship between dispersal and 
immunocompetence.

The ability of invaders to adjust phenotypic characteris-
tics via plasticity has been well studied (Wright et al. 2010; 
Hendry 2015; Peneaux et al. 2017) as have adaptive shifts 
by invasive species (Myles-Gonzalez et al. 2015; Gruber 
et al. 2017). However, these mechanisms are not mutually 
exclusive (Mery and Burns, 2010; Rollins et al. 2015), and 
synergistic changes have been suggested in other invasive 
species (Colautti and Lau 2015; Kilvitis et al. 2017; Reis-
inger et al. 2017). While our experimental design cannot 
distinguish whether our results are a result of plasticity or 
adaptation, there are some indications that both are involved. 
This is consistent with previous studies that suggest physi-
ological adjustments by individuals (i.e., phenotypic plas-
ticity; McCann et al. 2018) and rapid evolutionary changes 
(Brown et al. 2014, 2015a, b) are likely both involved in the 
spread of the cane toad. Invasiveness appears to be based on 
a complex interaction of ecology, evolution, and physiology, 
and future work should incorporate a broad range of organ-
ismal traits when trying to decipher the invasion potential 
of a species.
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